
Advanced Client Technology (A.C.T!) Centers

Sept 7, 2007 © 2007 IBM Corporation

Best Practices—Session ONE
September 27, 2007

Advanced Client Technology (A.C.T!) Centers

Sept 7, 2007 © 2007 IBM Corporation

HPC Best Practices
– Porting and debugging on System p

Xinghong He

HPC Benchmarking Support

Advanced Client Technology (A.C.T!) Centers

IBM Systems and Technology Group

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation3 July 18, 2007

Agenda

� System environment

– HW and SW environment for this presentation

� Application information gathering

– What we need for a porting engagement

� Porting/debugging with IBM compilers

– How to make use of compiler capabilities

� BLAS, LAPACK, and ESSL libraries

– Their relationships regarding compatibility

– Things to consider and check when migrating

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation4 July 18, 2007

System environment

� HW: Power5+ p575 cluster with HPS

– 160 dual core compute nodes – 2560 cores in total

– IBM 9118-575

– 1.9GHz, 64KB L1I, 32KB L1D, 1920KB L2, 36MB L3

– 64GB (1GBx64) DDR2 Memory

– Two GPFS file systems

• Two single core servers (8-way 2.2GHz)

• Four dual core servers (16-way 1.9GHz)

– Dual link, dual plane HPS

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation5 July 18, 2007

Dual plane dual link switch network

Switch
plane B

Switch
plane A

Nodes

sn0

sn0

sn1

sn1

sn1

sn1

sn0

sn0

High Availability

(Fail over)

High Performance

(Message striping)

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation6 July 18, 2007

System environment

� SW

– AIX 5300-05-05

– XLF 10.1.0.3, VACPP 8.0.0.12

– ESSL 4.2.0.4, PESSL 3.2.0.0

– POE 4.3.0.4

– LL 3.4.0.3

– PPE.XPROFILER 4.1.0.0

– CSM 1.5.1.2

– GPFS 3.1.0.9

– PMAPI 5.3.0.50

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation7 July 18, 2007

Application information gathering

Must have

– Source code

– Makefiles, build instructions and/or scripts

– Run scripts and/or instructions

– Sample input data

– Correctness criteria if not clear from output files

Nice to have

– Ported systems (HW, OS, compilers etc)

– Application docs on porting and tuning

– Sample output files

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation8 July 18, 2007

Porting/debugging with IBM compilers

– Addressing space: 32-bit or 64-bit

– Sizes of basic data types: i4 or i8, r4 or r8, pointers

– Precisions of constants

– Pre-processing and Fortran suffix rules

– Name mangling – mixed-language applications

– Array bound checking

– Un-initialized variables handling

– Compiler differences in dealing with language extensions

(non-standard or not-specified)

– Run-time environments

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation9 July 18, 2007

Addressing space: 32-bit or 64-bit

� Not to be confused with

– Processor family (p3/p4/p5/p6 are all 64-bit)

– OS Kernel (32-bit kernel vs 64-bit kernel)

– Floating point number precision (single precision vs double precision)

� Controlled by options –q32, –q64, and env OBJECT_MODE

– Default is 32 bit

– Option -q overrides env OBJECT_MODE

– must use the same mode for both compiling and linking

– Prefer OBJECT_MODE in many cases

� No need for separate lib/ and lib64/

– AIX allows 32-bit and 64-bit objects coexist in the same archive

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation10 July 18, 2007

Addressing space: 32-bit or 64-bit

� My app needs large memory >2GB

– Use –q64 without –bmaxdata and –bmaxstack options

– history: 32-bit default data and stack are small

� My app does not build with –q64

– Set OBJECT_MODE=64 and try again

– This takes care of library operations ar, ranlib, nm etc

� My new 64-bit app has run-time error (segmentation fault
etc)

– Check pointers (64 bits), integers (32 bits), long (64 bits)

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation11 July 18, 2007

Addressing space: 32-bit or 64-bit

� To check if an executable is 32-bit or 64-bit

– $ file a.out

� Some commands (not –q32|–q64)

– ld [–b32|-b64]

– ar [-X32|-X64|-X32_64]

– nm [-X32|-X64|-X32_64]

– ranlib [-X32|-X64|-X32_64]

– dump [-X32|-X64|-X32_64]

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation12 July 18, 2007

Sizes in bytes of basic C data types

8888844444pointer

8816161688121212long double

8888888888double

4444444444float

8888888888long long

8888844444long

4444444444int

2222222222short

1111111111char

XLCPGIIntelPSCGNUXLCPGIIntelPSCGNU

64-bit32-bitData types

Default sizes could be changed by compiler options.

Watch for int, long, long double, pointer, and Fortran integers.

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation13 July 18, 2007

XLF options for data type sizes

� -q32 - pointers, loc() are 4 bytes

� -q64 - pointers, loc() are 8 bytes

� -qintsize={2|4|8}

– Affect default integer and logical

– Intrinsic functions are supported

� -qdpc[=e] | -qnodpc

– double precision constant

– dbl_var=1.00000002000

this “2” will be lost without –qdpc

– Even worse case: call sub(a,1.0)

� -qrealsize={4|8}

– Similar to –qintsize option, affect
default sizes

– -qrealsize=8 overrides –qdpc

– -qrealsize=8 promotes REAL

� -qautodouble={none|dbl4|dbl4pad|
dbl8|dbl8pad|dbl|dblpad}

– Mostly dbl4 or dbl4pad

– Overrides –qrealsize

– dbl4 promotes REAL, REAL*4

– use also at link stage

Pay particular attention to external libraries
such as ESSL, PESSL, LAPACK, MPI

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation14 July 18, 2007

Pre-processing and Fortran suffix rules

� Pre-processing

– Option -D is for debugging purpose ==-qdlines

– Use -WF,-Dmacro1,-Dmacro2,…

• No space in between

• Option –d can be used to save the processed source file
(Warning: Do a list of files before using this option to
prevent file overwriting)

– Add -qsuffix=cpp=suffix if source files are not .F90 or .F

– File “a.F90” implies Fortran 90 code and “a.F” implies
Fortran 77 code, not just free format and fixed format.

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation15 July 18, 2007

Pre-processing and Fortran suffix rules

� XL Fortran suffix rules

– No need to add –qsuffix for
files of the suffixes: .f .f90 .F
.F90

– It’s the combinations, not the
compiler commands (xlf, xlf90),
nor the file suffixes, which
determine the file type (see
table on the right).

– Fixed or free format is implied

– Behavior can be changed by
explicit options such as –
qfixed, -qfree, -qsave, -
qnosave etc.

F90F90a.F90

F90F77a.F

F90F90a.f90

F90F77a.f

xlf90xlf

Fortran 90 and 77 codes as determined

by combinations of commands and file

suffixes.

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation16 July 18, 2007

Fortran name mangling

� Fortran compilers often change some symbols (functions,
subroutines, common blocks etc) internally.

� Different vendors (compilers) do this differently – no standard.

� Not an issue if app is not mixed-language (C, Fortran)

� Could be a source of headache for mixed-language apps
involving multiple packages (FFTW, netCDF, HDF, MPICH etc).

� Typical error

xlf flush.f #flush.f contains call flush(12)

ld: 0711-317 ERROR: Undefined symbol: .flush

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation17 July 18, 2007

Fortran name mangling - default

[-funderscoring -fno-second-
underscore]

subb__suba_gfortran

[-qnoextname]subb_subaxlf

[-Munderscoring –
Mnosecond_underscore]

subb__suba_pgf77

[-us –assume
no2underscores]

subb__suba_ifort

[-funderscoring -fsecond-
underscore]

subb___suba_g77/pathf90

Default optionsubb_subaCompilers

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation18 July 18, 2007

Fortran name mangling – no underscore

-fno-underscoringsubb_subagfortran

defaultsubb_subaxlf

-Mnounderscoringsubb_subapgf77

-nussubb_subaifort

-fno-underscoringsubb_subag77/pathf90

Optionssubb_subaCompilers

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation19 July 18, 2007

Fortran name mangling – one underscore

defaultsubb__suba_gfortran

-qextnamesubb__suba_xlf

defaultsubb__suba_pgf77

defaultsubb__suba_ifort

-funderscoring -fno-
second-underscore

subb__suba_g77/pathf90

Optionssubb_subaCompilers

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation20 July 18, 2007

Fortran name mangling – one and two underscores

-funderscoring -fsecond-
underscore

subb___suba_gfortran

N/A, use -brenamesubb___subaxlf

-Munderscoring -
Msecond_underscore]

subb___suba_pgf77

-us –assume 2underscoressubb___suba_ifort

defaultsubb___suba_g77/pathf90

Optionssubb_subaCompilers

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation21 July 18, 2007

XLF options handling names

� -qextname[=name1[:name2…]] | -qnoextname
– name1� name1_, name2�name2_,…

– -qextname without a name list will convert all

– compile time, no dots involved

– -qextern=name is totally different. (external vs. intrinsic)

� -brename:old_name,new_name

– one pair per option

– often starts with a dot�.old_name,.new_name

– no space around

– link time

� -qextname and -brename can be combined

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation22 July 18, 2007

Inter language calls (C and Fortran)

� XLF converts symbols to lower case by default

– Use option –U or directive @PROCESS=MIXED to

preserve case

– Intrinsic functions must be in lower case if –U is used

� XLF always call-by-reference while C can do call-
by-reference and call-by-value

– Use %VAL, %REF to change it

– Example: iptr = malloc(%VAL(n))

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation23 July 18, 2007

XLF name mangling example

$ cat a.f

call sub

end

subroutine suba

print *, 'suba called'

end

subroutine sub_

print *, 'sub_ called'

end

� $ xlf a.f

– will fail because no sub

� $ xlf -qextname a.f

– will also fail because both sub
and sub_ get an underscore

� $ xlf -qextname=sub a.f

– will call sub_

� $ xlf -brename:.sub,.suba a.f

– will call suba

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation24 July 18, 2007

Debugging with XLF

� Tools are a great help for debugging

– idebug, totalview, dbx, gdb

� XLF compiler can do some work very easily and
effectively

– Name mangling

– Sizes of basic data types

– Array bound checking

– Un-initialized variables and arrays

– Floating point exception catching

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation25 July 18, 2007

Array bound checking with XLF

� Compile code with –C –g options

– -C turns on checking at compile time and run-time

– Some errors are caught at compile time, some run-time

– -g helps with line number of the error (debugger), could be
omitted or replaced by –qlinedebug.

� Run the code

� Run dbx or gdb to find the line of error

� Problem: legacy code dummy argument arrays

subroutine suba (n, a)

dimension a(1) ! actually meant for a(n)

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation26 July 18, 2007

Array bound checking with XLF - Example

dimension a(3)

do i = 0, 4

a(i) = i

end do

print *, a

d print *, a(0), a(4)

end

This line will be caught at run-
time if compiled with –C -g

This line will be caught at compile
time with options –C –g -qdlines

Compile time or run-time?
It may change.

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation27 July 18, 2007

Array bound checking with XLF - Example

$ xlf -C -g bound.f

$ a.out

Trace/BPT trap(coredump)

$ dbx a.out

Type 'help' for help.

[using memory image in core]

reading symbolic information ...

Trace/BPT trap in _main at line 3

3 a(i) = i

$ xlf -qdlines -C -g bound.f

"bound.f", line 6.16: 1516-023 (S)
Subscript is out of bounds.

"bound.f", line 6.22: 1516-023 (S)
Subscript is out of bounds.

** _main === End of Compilation 1
===

1501-511 Compilation failed for file
bound.f.

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation28 July 18, 2007

Array bound checking and dummy arguments

subroutine aa(n,a)

dimension a(1)

do i = 1, n

print *, a(i)

enddo

end

This line will core dump if array

bound checking is turned on (xlf
–C).

Undesirable, but ...any other
way except changing the code
a(1) to a(n) ?

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation29 July 18, 2007

Find un-initialized variables

1. Compile with -g -qnosave -qinitauto=FF -
qflttrap=nanq

– Every option has its role

• -qsave will always set –qinitauto=0

• -qflttrap=nanq will trap the error, not letting go with nanq

– Will catch (cause core dump) un-initialized REAL*4
and REAL*8, including COMPLEX

– Replace FF by 7FBFFFFF to catch REAL*4 only

2. Run the code followed by dbx or gdb

-qinitauto=0 may be desirable in most cases

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation30 July 18, 2007

Un-initialized variables - Example

real a(3)

do i = 1, 3

a(i) = a(i) + 100

enddo

print *, a

end

$ xlf90 -g -qinitauto=FF -

qflttrap=nanq tmp.f

$./a.out

Trace/BPT trap(coredump)

$ dbx a.out

…

Trace/BPT trap in _main at line 3

3 a(i) = a(i) + 100

a(i)
not in

itia
lized

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation31 July 18, 2007

Fortran90 derived data types - example

subroutine sub(myname)

type name

!sequence

character(20) lastname

character(10) firstname

character(1) initial

end type name

type (name) myname

print *, myname

end subroutine

� XLF (v10.1 and v11.1)
requires the explicit sequence
statement – Reason: dummy
argument.

� All the following do not
require it. No warning
message too.

– gfortran 4.0.2

– Intel ifort 9.1

– Pathscale pathf90 2.5

– PGI pgf90 6.2.5

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation32 July 18, 2007

More floating point exception handlings

� -qflttrap=ov:und:inv:zero:nanq:en

– The last suboption “en” is needed. Otherwise the user

needs to implement exception handler

– –qflttrap alone means

–qflttrap=inv:inex:ov:und:zero

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation33 July 18, 2007

Run-time environments

� LIBPATH

– for shared libs, not normally

used

� TMPDIR

– for scratch files

– default is /tmp

� PDFDIR

– if doing PDF runs

� XLFRTEOPTS

– XLF run-time

� XLSMPOPTS

– for SMP code

� OMP_NUM_THREADS

– for OpenMP code

– Recommend to set to 1 in
.cshrc file to avoid surprise

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation34 July 18, 2007

Run-time environments

� Little endian to big endian

– export XLFRTEOPTS=ufmt_littleendian=list_of_units

– list_of_units is a coma-separated list of Fortran I/O units

– example: -7,11,13,15-20,70-

– UNFORMATTED files only

– Handles REAL*4, REAL*8 appropriately, not REAL*16 data, not derived type
data.

� I/O buffering

– export XLFRTEOPTS=buffering={enable|disable_preconn|disable_all}

– preconn I/O units are 0, 5, 6

– Performance (enable) and mixed language apps (disable)

� NAMELIST

– XLFRTEOPTS=namelist={new|old}

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation35 July 18, 2007

BLAS, LAPACK, ESSL

ESSL

LAPACK

BLAS

Green
Zone

Red
Zone

Same name,
same functionality

same name,
different functionality

Different name, same
(similar) functionality

CCI CCI

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation36 July 18, 2007

LAPACK – CCI – ESSL

� CCI stands for Call Conversion Interface

– A collection of wrappers of LAPACK routines using ESSL.

– Help LAPACK users to use ESSL without modifying their
source codes.

– Available from netlib.

– Latest version 1.2, 2000-12-07.

– Out dated. Only 1, out of 30, is not in the Green zone (ESSL
4.2).

– There are still candidates for CCI.

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation37 July 18, 2007

Call Conversion Interface (CCI 1.2), netlib

cgetrf.f dgetrs.f dpptri.f spbtrf.f stptri.f

cgetrs.f dpbtrf.f dtptri.f spotrf.f strtri.f

cpotrf.f dpotrf.f dtrtri.f spotri.f zgetrf.f

cpotrs.f dpotri.f sgetrf.f spotrs.f zgetrs.f

dgetrf.f dpotrs.f sgetri.f spptrf.f zpotrf.f

dgetri.f dpptrf.f sgetrs.f spptri.f zpotrs.f

All are now directly available from ESSL 4.2 except
spbtrf.f

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation38 July 18, 2007

LAPACK3.1.1 routines included in ESSL4.2

DTRTRI

DTPTRI

ZTRTRI

ZTPTRI

STRTRI

STPTRI

CTRTRI

CTPTRI

DPOTRS

ZPOTRS

DPPTRS

ZPPTRS

SPOTRS

CPOTRS

SPPTRS

CPPTRS

DPOTRF

ZPOTRF

DPPTRF

ZPPTRF

SPOTRF

CPOTRF

SPPTRF

CPPTRF

DGELSDPOTRI

ZPOTRI

DPPTRI

SPOTRI

CPOTRI

SPPTRI

DPOSV

ZPOSV

SPOSV

CPOSV

DGEQRFDGETRI

ZGETRI

SGETRI

CGETRI

DPPSV

ZPPSV

SPPSV

CPPSV

DGETRS

ZGETRS

SGETRS

CGETRS

DGETRF

ZGETRF

SGETRF

CGETRF

DGESV

ZGESV

SGESV

CGESV

DoubleSingleDoubleSingleDoubleSingle

For these routines, always link ESSL before
LAPACK for performance.

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation39 July 18, 2007

Name Conflicting in ESSL4.2 and LAPACK3.1.1

DGEGVSGEGV

DSYGVSSYGV

DSPSV ZHPSVSSPSV CHPSV

DSPEV ZHPEVSPPEV CHPEV

DGEEV ZGEEVSGEEV CGEEV

DoubleSingle

� These routines have the
same name in ESSL and
LAPACK, but they function
differently.

� In case any of them are used,
link order matters for
correctness !

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation40 July 18, 2007

LAPACK routines to ESSL - Unofficial

Eigenvalues and, optionally,
the eigenvectors of a complex
hermitian matrix. zhpev is in
Red Zone.

zhpevzheev

dspevdsyevx

Eigenvalues and, optionally,
the eigenvectors of a real
symmetric matrix. dspev is in
Red Zone.

dspevdsyev

NoteCalls ESSLLAPACK wrapper

Link the wrappers with ESSL, not LAPACK

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation41 July 18, 2007

LINPACK routines to ESSL - Unofficial

dgetrsdgesl

General matrix multiple right-
hand side solve. SMP, in
Green Zone.

cgetrscgesl

dgetrfdgefa

General matrix factorization.
SMP, in Green Zone.

cgetrfcgefa

NoteCalls ESSLLINPACK wrapper

Advanced Client Technology (A.C.T!) Centers

© 2007 IBM Corporation42 July 18, 2007

Summary

� Understand compiler differences

� Make best use of compiler capabilities

– -WF,-Dmacro -g –q32 –q64 -qextname –qextern –

qintsize –qdpc –qrealsize –qautodbl –qintlog -

qinitauto –qflttrap –brename –C

� Set XLFRTEOPTS properly

� Understand relationships among ESSL, LAPACK, BLAS

– Green Zone, Red Zone, CCI concept

